منابع مشابه
Generalizations of principally quasi-injective modules and quasiprincipally injective modules
LetR be a ring andM a rightR-module with S= End(MR). The moduleM is called almost principally quasi-injective (or APQ-injective for short) if, for any m∈M, there exists an S-submodule Xm of M such that lMrR(m) = Sm ⊕ Xm. The module M is called almost quasiprincipally injective (or AQP-injective for short) if, for any s∈ S, there exists a left ideal Xs of S such that lS(ker(s)) = Ss ⊕ Xs. In thi...
متن کاملCompletely coretractable rings
A module $M$ is said to be coretractable if there exists a nonzero homomorphism of every nonzero factor of $M$ into $M$. We prove that all right (left) modules over a ring are coretractable if and only if the ring is Morita equivalent to a finite product of local right and left perfect rings.
متن کاملA Note on א0-injective Rings
A ring R is called right א0-injective if every right homomorphism from a countably generated right ideal of R to RR can be extended to a homomorphism from RR to RR. In this note, some characterizations of א0-injective rings are given. It is proved that if R is semiperfect, then R is right א0injective if and only if every homomorphism from a countably generated small right ideal of R to RR can b...
متن کاملOn semiperfect rings of injective dimension one
We give a characterization of right Noetherian semiprime semiperfect and semidistributive rings with inj. dimAAA 6 1.
متن کاملcompletely coretractable rings
a module $m$ is said to be coretractable if there exists a nonzero homomorphism of every nonzero factor of $m$ into $m$. we prove that all right (left) modules over a ring are coretractable if and only if the ring is morita equivalent to a finite product of local right and left perfect rings.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1994
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700016610